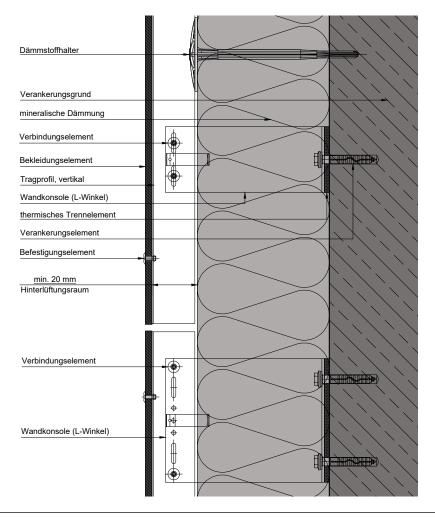
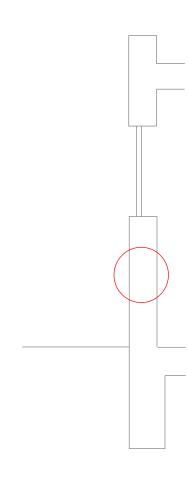
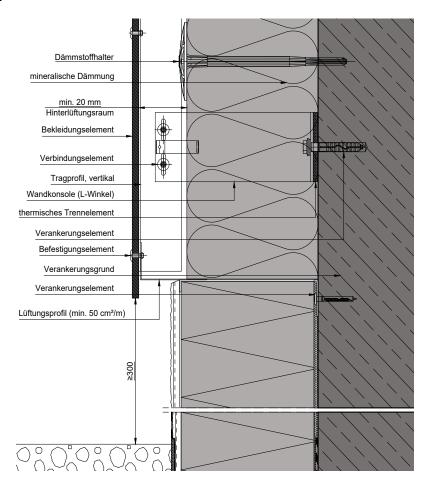
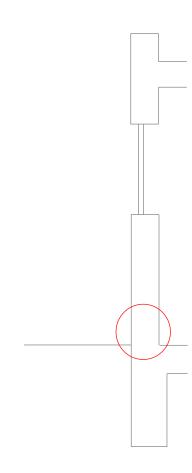

VHF FASSADENSEMINAR MODUL 4: VHF-BAUTECHNIK

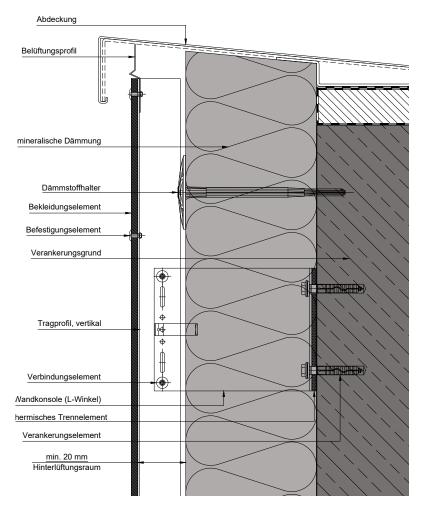
INHALT

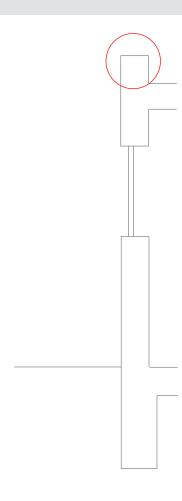

- Leitdetails der VHF Vertikal
- Leitdetails der VHF Horizontal
- Leitdetails Fenster
- Übergänge
- Leitdetails Brandsperre
- Bauphysikalische Grundlagen
- Brandschutz
- Tools
- Leitlinien

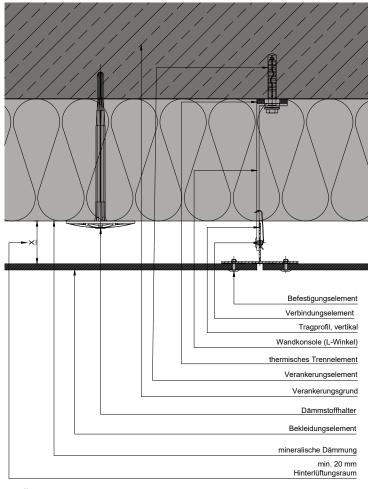


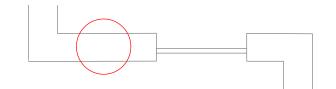



VHF, FLÄCHE, VERTIKALSCHNITT

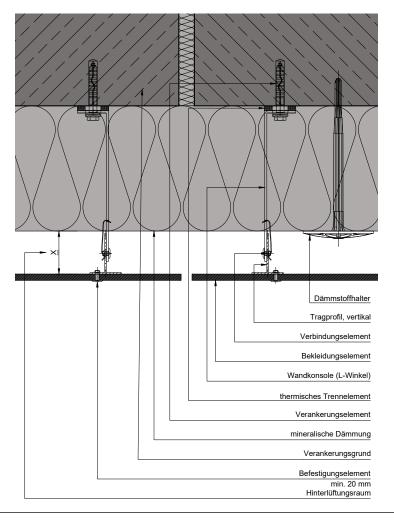


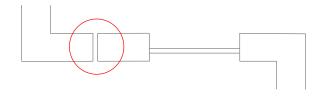

VHF, SOCKEL, ABSCHLUSS

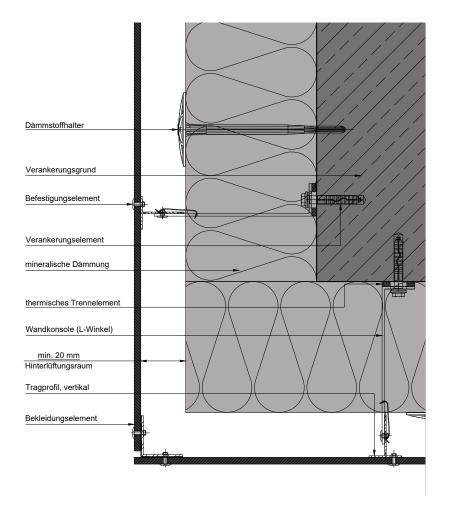

VHF, DACHRAND, ATTIKA

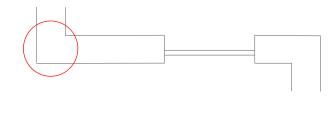


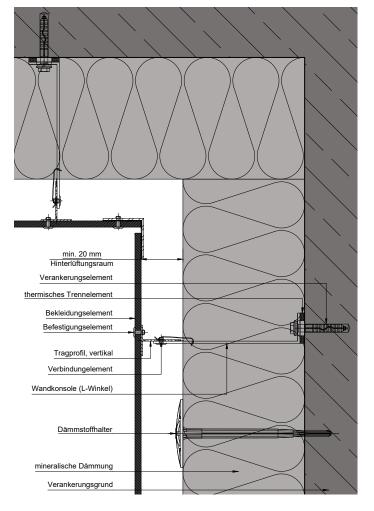
VHF, FLÄCHE, HORIZONTALSCHNITT

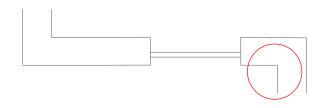


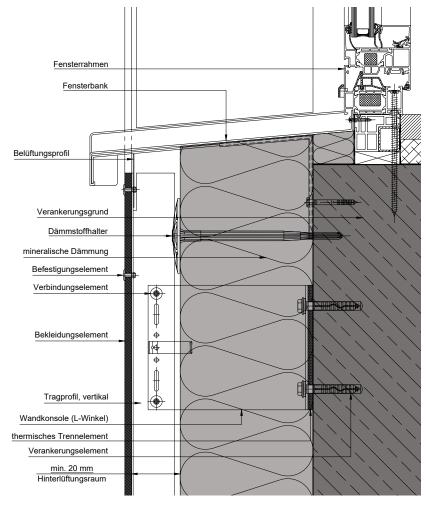


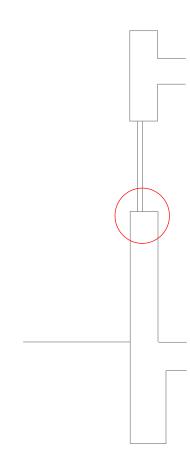


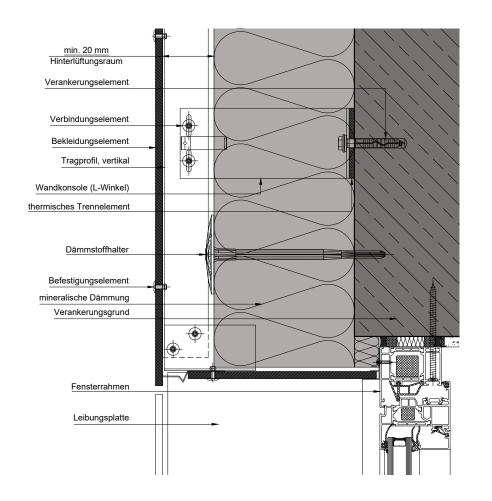

VHF, FLÄCHE, HORIZONTALSCHNITT

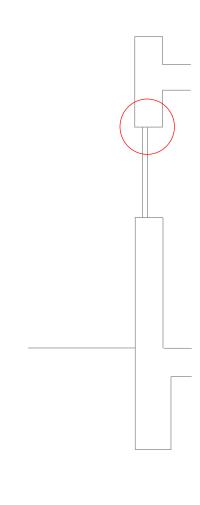


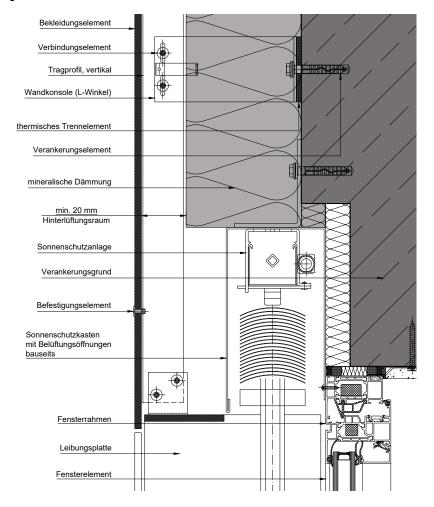

VHF, AUSSENECKE

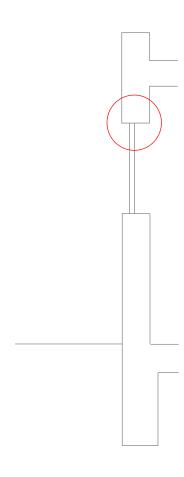



VHF, INNENECKE

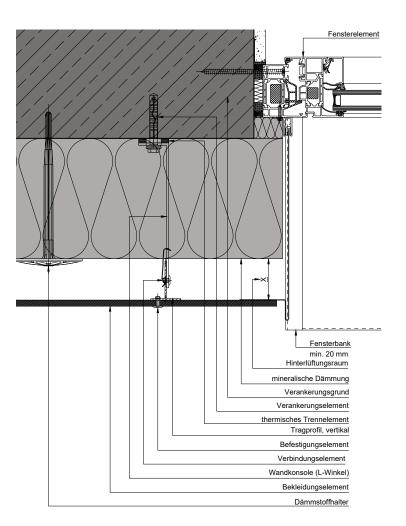


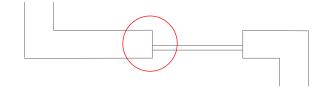

VHF, ÖFFNUNG, FENSTERBANK


VHF, ÖFFNUNG, STURZ

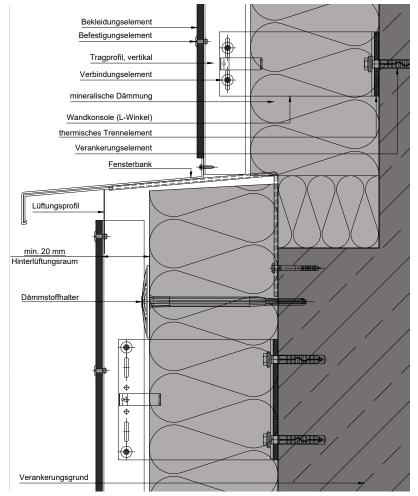


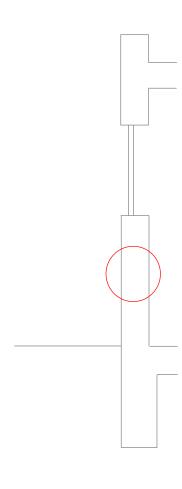
VHF, ÖFFNUNG, SONNENSCHUTZ





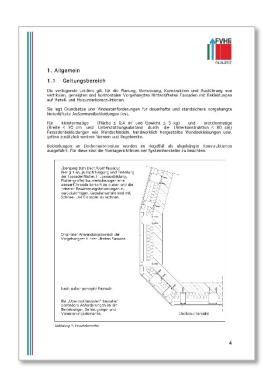
VHF, FENSTERLAIBUNG

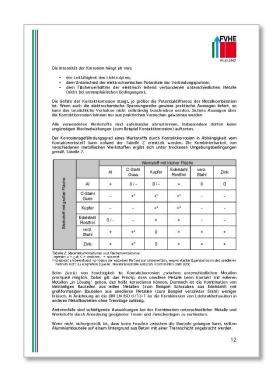


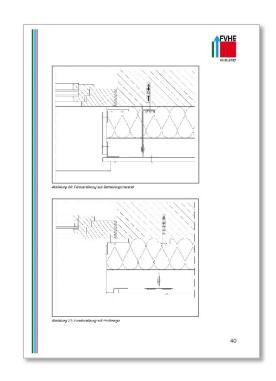


Modul 4: Bautechnik | Übergänge

VHF, VERSPRUNG







FVHF-LEITLINIE "VHF PLANUNG UND AUSFÜHRUNG"

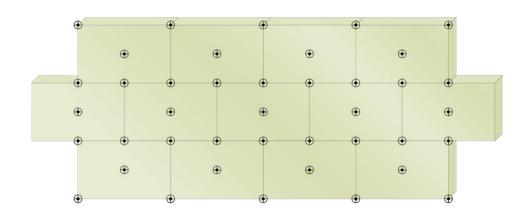
Quelle: www.fvhf.de/Fassade-bilder/docs/FVHF-Leitlinie_Planung_Ausfuehrung-0321.pdf

DAS NEUE GEBÄUDEENERGIEGESETZ (GEG)

Das GEG führt zusammen:

- EnEG Energieeinsparungsgesetz
- EnEV Energie-Einsparverordnung
- EEWärmeG Erneuerbare Energien-Wärmegesetz

Es enthält Anforderungen an


- Energetische Qualität von Gebäuden
- Erstellung von Energieausweisen
- Einsatz erneuerbarer Energien in Gebäuden

Quelle: bmi.bund.de

Mineralische nichtbrennbare **Fassadendämmung**

- Schutz vor Wärmeverlust (Winter)
- Şchutz vor Überhitzung (Sommer)
- Brand- & Schallschutz
- Langlebig ohne Wartung

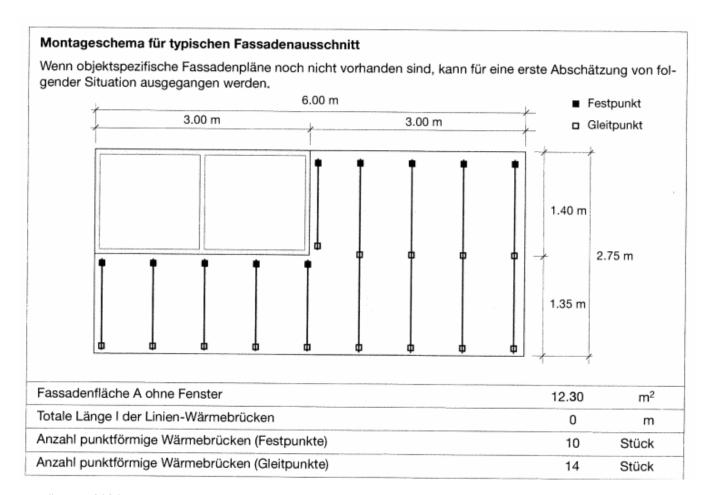
Technische Anforderung

- Fassadendämmplatten sind dicht zu stoßen
- Ohne Hohlräume zwischen Untergrund und Dämmschicht
- 5 Dämmstoffhalter/m²

Quelle: www.rockwool.com

WÄRMEBRÜCKEN

Anwendungsbeispiel:

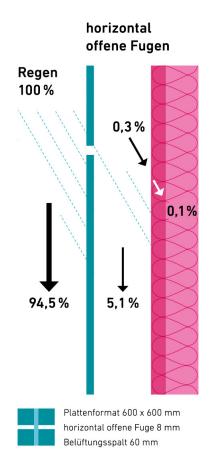

Aluminium-Unterkonstruktion (Vollmetallsystem)

Diese und die weiteren Grundkonstruktionen sind herstellerunabhängig. Die Dimensionierung der Unterkonstruktion soll in der Regel durch den Statikingenieur zusammen mit dem Systemanbieter aufgrund der Randbedingungen (Lasten, Bekleidung, gesetzliche Vorschriften, etc.) bestimmt werden.

Systembeschrieb der Unterkonstruktion Werkstoffe: Verankerungsgrund Profile aus Aluminium-Legierung Abstandhalter aus PVC-GHS (Hartschaum) Geometrie: Dämmstoff Konsole: Querschnitt 60 mm x 4 mm Thermische Trennung 50 mm / 130 mm Schenkel Konsole Winkel aussen 45 mm x 45 mm x 2 mm Thermisches Trennelement 60 mm x 50 mm x 6 mm Verankerung: Metall-Ankerhülsen CrNiMo-Stahl Typ A4 M8-Stahlschrauben CrNiMo-Stahl Typ A4 Winkel aussen (Tragprofil) Bemerkungen: Gleit- und Festpunkte thermisch gleich zu behandeln.

- Konsolen zur Befestigung der Aluminium-Unterkonstruktion durchdringen die Dämmebene
- Einsatz thermischer Trennelemente zur Minimierung von Wärmebrücken

WÄRMEBRÜCKEN



Zu ermitteln sind

- Linien-Wärmebrücken
- Punktförmige Wärmebrücken (z.B. Fest- und Gleitpunkte)

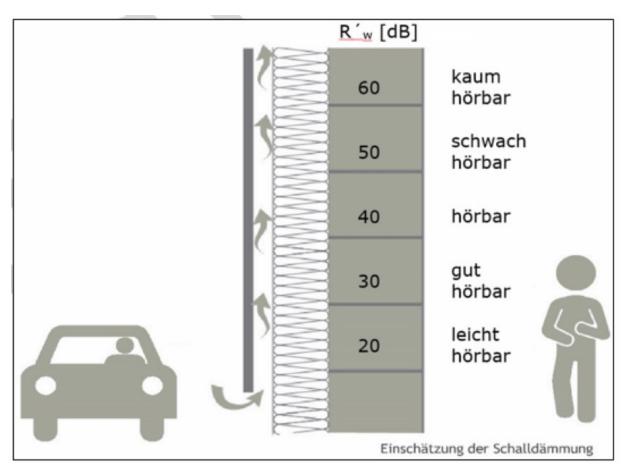
SCHLAGREGENDICHTHEIT

Offene Fuge

- Offene Fugen zwischen den Bekleidungsplatten beeinträchtigen den Regenschutz nicht
- Konstruktive Maßnahmen als Witterungsschutz empfohlen, wenn Öffnungsanteil der Fassadenbekleidung > 5% oder Fugenbreite > 15mm
- Wasserabweisende mineralische Dämmung

VORTEILE OFFENER FUGEN

- Funktionssicherheit der VHF wird durch gute Luftzirkulation gesteigert
- Hauptanteil des Regenwassers wird an der Oberfläche der Fassade abgeführt
- Geringe Mengen von eingedrungenem Wasser sowie Tauwasser werden im Hinterlüftungsraum abgeführt
- Durch dauerhafte Luftzirkulation trocknen diese Bereiche schnell ab
- VHF gilt im Sinne der DIN 4108-3 als schlagregensicher (Beanspruchungsgr. III, Jahresniederschlag > 800mm)


Zusammenstellung der Wandkonstruktionen mit ausreichendem Regenschutz nach DIN 4108-3

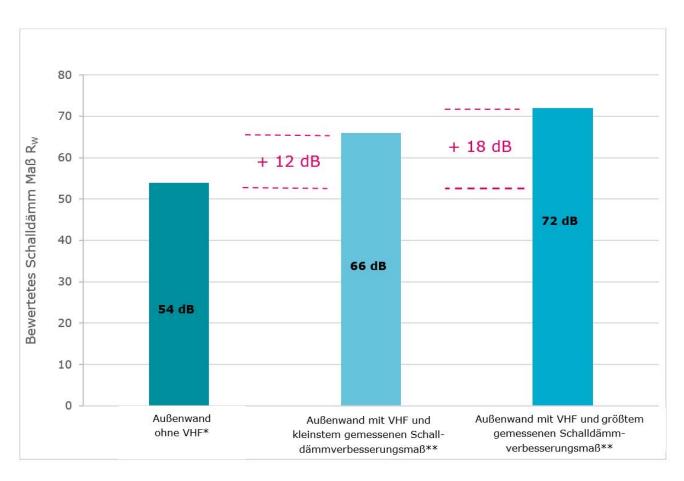
Spalte	1	2	3	
Zeile	Beanspruchungsgruppe I	Beanspruchungsgruppe II	Beanspruchungsgruppe III	
5	Wände mit hinterlüfteter Außenwandbekleidung nach DIN 18516-1, DIN 18516-3 und DIN 18516-4; offene Fugen zwischen den Bekleidungsplatten sind zulässig und beeinträchtigen den Regenschutz nicht			

Offene waagerechte Fugen reduzieren die sichtbare Verschmutzungsanfälligkeit der Fassadenflächen

Quelle:

Konstruktionen mit VHF sind nachweislich geprüft und können Schalldämmwerte von mind. 66dB erreichen.

Lärmpegel- bereich	Maßgeblicher Außenlärmpegel	Erforderliches Luftschalldämm-Maß R´ _{w,ges} der Außenbauteile verschiedener Raumarten in dB					
	in dB (A)	Bettenräume in Krankenanstalten	Aufenthaltsräume in Wohnungen, Übernachtungsräumen, Unterrichtsräumen	Büroräume ¹⁾ und ähnliches			
I	55	35	30	30			
II	60	35	30	30			
III	65	40	35	30			
IV	70	45	40	35			
V	75	50	45	40			
VI	80	2)	50	45			
VII	größer 80	2)	2)	2)			


¹⁾ An Außenbauteile von Räumen, bei denen der eindringende Lärm aufgrund der in den Räumen ausgeübten Tätigkeiten nur einen untergeordneten Beitrag zum Innenraumpegel hat, werden keine Anforderungen gestellt.

2) Die Anforderungen sind nach den örtlichen Gegebenheiten festzulegen

Quelle: www.fvhf.de

Verkehrslärm liegt bei 60-90dB und ist durch das Luftschalldämmmaß der Außenbauteile für Innenräume je nach Nutzungsart deutlich zu reduzieren.

Gegenüber einer Standard-Rohwand sind durch eine VHF Verbesserungen des Schalldämmmaßes von +12dB bis +18dB möglich

*Kalksandsteinwand

Vollsteine (KSV), 24cm Wanddicke, rückseitig verputzt

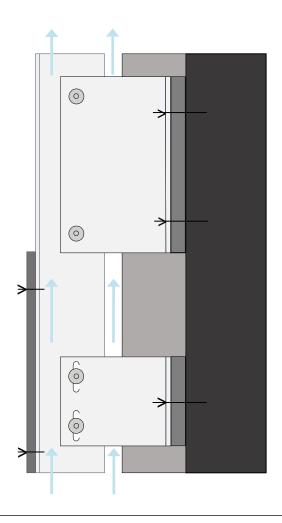
**Kalksandsteinwand mit VHF

Vollsteine (KSV), 24cm Wanddicke, rückseitig verputzt

- 1. Wärmedämmung aus Mineralwolle mit einer Dicke von 180mm und Dämmstoffhaltern
- 2. Wandhalter (Fest- und Gleitpunkte) aus 2mm nichtrostendem Stahl mit Verankerung durch Schraub-Dübelkombination
- 3. Thermische Trennelemente (6mm) zwischen Wandhalter und Wand
- 4. Hinterlüftungsraum (zwischen Rückseite Bekleidung und Vorderseite Dämmstoff) mit T- und L-Tragprofilen aus Aluminium

FVHF- Prüfung	Bekleidungs- material	Schalldämm- verbesserungsmaß	Schalldämm- Maß	
1	Aluminium-Verbundplatte	$\Delta R_w = 13 \text{ dB}$	$R_w = 67 \text{ dB}$	
2	Aluminium-Vollblech	$\Delta R_w = 12 \text{ dB}$	R _w = 66 dB	
3	Faserzement-Platte	$\Delta R_w = 14 \text{ dB}$	$R_w = 68 \text{ dB}$	
4	Glas-Verbundplatte	$\Delta R_w = 18 \text{ dB}$	$R_w = 72 \text{ dB}$	
5	Feinsteinzeug-Platte	$\Delta R_w = 14 \text{ dB}$	$R_w = 68 \text{ dB}$	
6	Ziegel-Platte > 20 kg/m² und < 35 Kg/m²	$\Delta R_w = 12 \text{ dB}$	R _w = 66 dB	
7	Ziegel-Platte ≥ 35 kg/m² und < 55 kg/m²	$\Delta R_w = 13 \text{ dB}$	R _w = 67 dB	
8	Putzträger- Plattensystem	$\Delta R_w = 13 \text{ dB}$	$R_w = 67 \text{ dB}$	

Das Schalldämmverbesserungs-maß ist abhängig von dem gewählten Bekleidungsmaterial



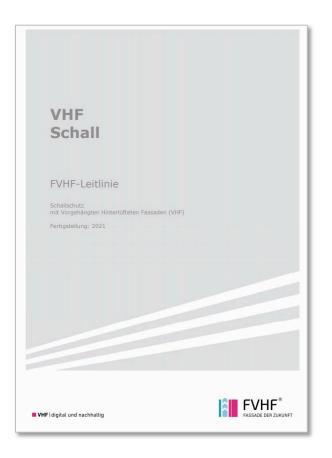
BAUPHYSIKALISCHE VORTEILE DER VHF

Wärmeschutz

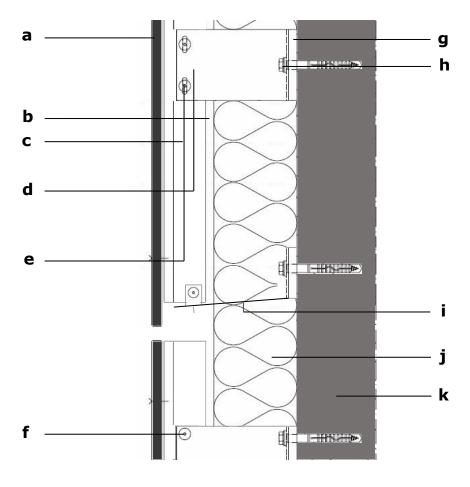
Jede Dämmstoffdicke realisierbar

Feuchteschutz

- Diffusionsoffene Gesamtkonstruktion
- Wirksamer Regen- und **Tauwasserschutz**


Schallschutz

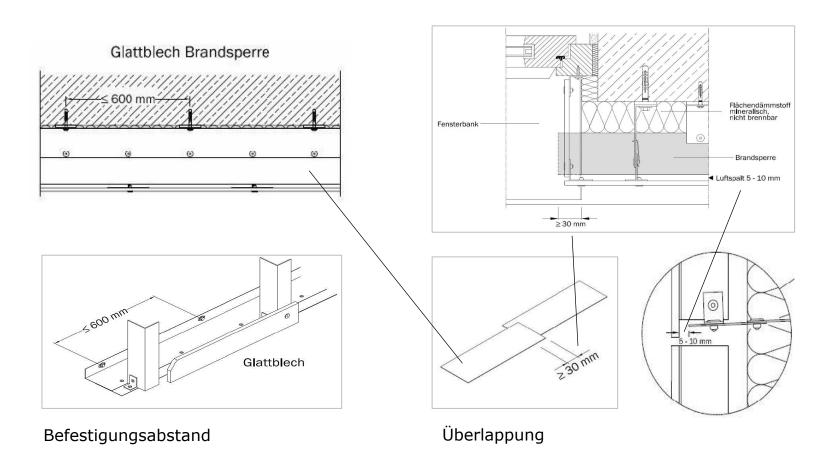
Zusätzlicher Schallschutz: bis zu 18dB gesteigert



RICHTLINIE "WÄRMEBRÜCKEN", FVHF-LEITLINIE "VHF-SCHALL"

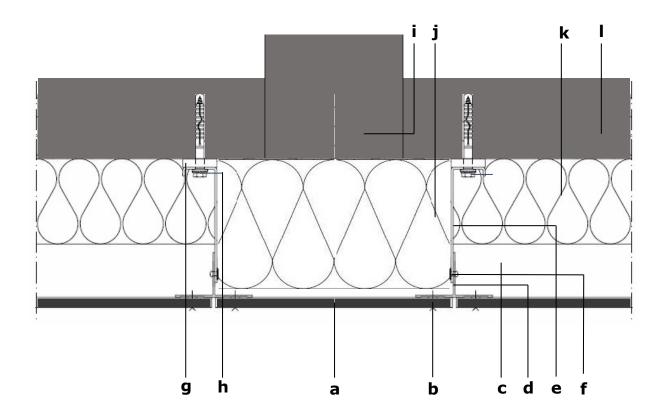
Gemeinschaftsarbeit von:	
BFE	Richtlinie
ЕМРА	
FVHF	Bestimmung der wärmetechnischen Einflüsse von Wärmebrücken bei
SFHF	vorgehängten hinterlüfteten Fassaden
SSIV	
SVDW	
SWISSISOL	
SZFF	
	Ausgabe 1998

HORIZONTALE BRANDSPERRE


- a Bekleidungselement
- **b** Hinterlüftungsraum ≥ 20mm
- **c** Tragprofil, vertikal
- **d** Wandkonsole (L-Winkel)
- e Detail Gleitpunkt
- f Detail Festpunkt
- **q** Thermisches Trennelement
- **h** Verankerungselement
- i Brandsperre, Stahlblech, d ≥ 1mm, Verankerungsabstand ≤ 0,60m, Stoßüberlappung ≥ 30mm; Belüftung als durchgehender Spalt, Abstand zum Bekleidungselement 5-10mm
- j Mineralische Dämmung, nicht brennbar, Dämmstoffdicke z.B. nach Wärmeschutznachweis, Schmelzpunkt ≤ 1000 °C
- k Verankerungsgrund

Muster-Verwaltungsvorschrift Technische Baubestimmungen (MVV TB), Anhang 6 -Hinterlüftete Außenwandbekleidungen

 $Quelle: www.fvhf.de, www.dibt.de/fileadmin/dibt-website/Dokumente/Referat/P5/Technische_Bestimmungen/MVVTB_2020-1.pdf$

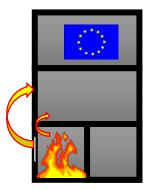

HORIZONTALE BRANDSPERRE

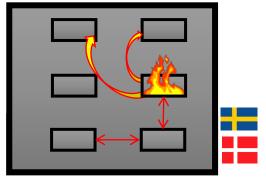
Die Brandsperren sind zwischen dem Verankerungsgrund und der Bekleidung einzubauen.

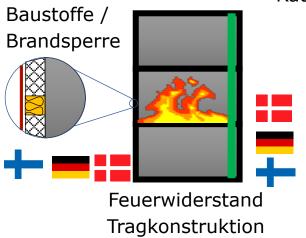
Bei einem formstabilen Dämmstoff mit einem Schmelzpunkt von > 1000°C genügt der Einbau der Brandsperre zwischen dem Dämmstoff und der Bekleidung. Befestigung der Brandsperre dann punktuell über Einzelkonsolen möglich.

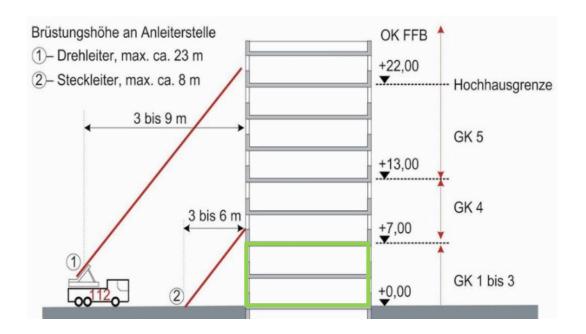
VERTIKALE BRANDSPERRE

- a Bekleidungselement, nicht brennbar
- **b** Befestigungselement
- c Hinterlüftungsraum
- **1** Tragprofil, vertikal
- e Wandkonsole (L-Winkel)
- **f** Festpunkt / Gleitpunkt
- **g** Thermisches Trennelement
- **h** Verankerungselement
- i Brandwand (innere)
- j Brandsperre mindestens in Brandwanddicke, mineralischer formstabiler Dämmstoff, nicht brennbar Schmelzpunkt > 1000 °C
- k Mineralische Dämmung, Dämmstoffdicke z.B. nach Wärmeschutznachweis, z.B. Schmelzpunkt ≤ 1000 °C
- Verankerungsgrund


SCHUTZZIELE

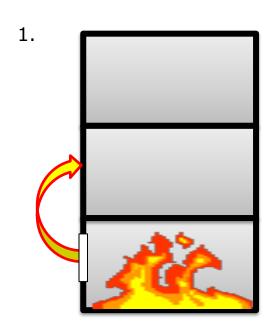

Brandausbreitung entlang der Fassade


Herabfallende Teile


Feuerwiderstand Raumabschluss

Brandausbreitung zwischen Fenstern

BRANDSCHUTZ NACH MBO/LBO



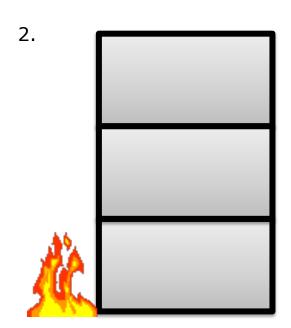
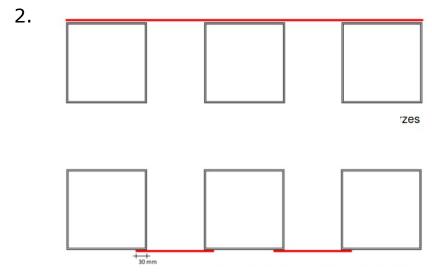

Gebäudehöhe*	Bekleidung	Dämmstoff	Unterkonstruktion
ab 22 Meter	nichtbrennbar	nichtbrennbar	nichtbrennbar
7 – 22 Meter	normalentflammbar**	nichtbrennbar	normalentflammbar**
bis 7 Meter	normalentflammbar	normalentflammbar°	normalentflammbar

Tabelle 1: Baustoffanforderungen nach Gebäudehöhe

- * Der FVHF empfiehlt nichtbrennbare mineralische Dämmstoffe für alle Gebäudeklassen des Typs WAB T3 WL(P).
- * Höhe im Sinne der MBO ist das Maß der Fußbodenoberkante des höchstgelegenen Geschosses, in dem ein Aufenthaltsraum möglich ist, über der Geländeoberfläche im Mittel.
- ** Wenn die Brandausbreitung ausreichend lange begrenzt ist.

PRÜFSZENARIEN

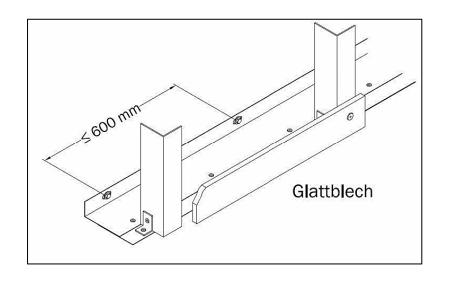
- 1. Prüfnorm DIN 4102-20
 Ergänzender Nachweis für die
 Beurteilung des Brandverhaltens
 von Außenwandbekleidungen,
 Zimmerbrand
 (Brand in dem Gebäude)
- 2. Prüfnorm E DIN 4102-24
 Ergänzender Nachweis für die
 Beurteilung des Brandverhaltens
 von Außenwandbekleidungen,
 Sockelbrand
 (Brand vor dem Gebäude, z.B.
 Müllcontainer, Autos)

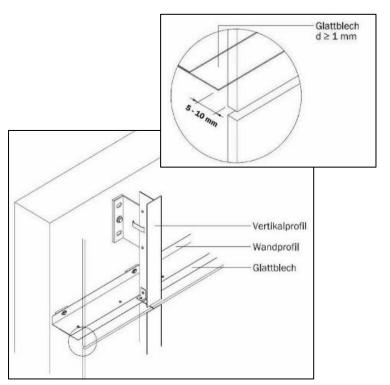

VORKEHRUNGEN GESCHOSSÜBERGREIFENDE HOHL-/LUFTRÄUME

- Wärmedämmung: Nichtbrennbar
- Hinterlüftungsspalt: Holz-UK ≤ 50mm / Metall-UK ≤ 150mm
- Horizontale Brandsperren in jedem zweiten Geschoss, min. 30 Min. formstabil
- Z.B. aus Stahlblech, Dicke d ≥ 1mm, Verankerungsabstände ≤ 0,6 m, 30mm Überlappung an Stößen
- Einbautiefe der Brandsperren abhängig vom Schmelzpunkt des Dämmstoffes
- Öffnungsanteil in Brandsperren ≤ 100cm²/lfm

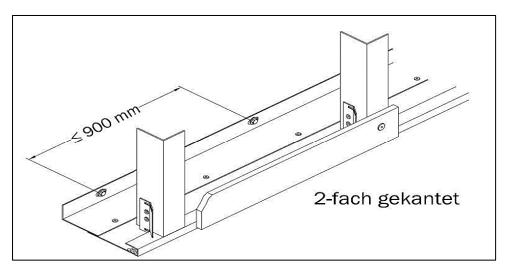
Quelle: www.dibt.de

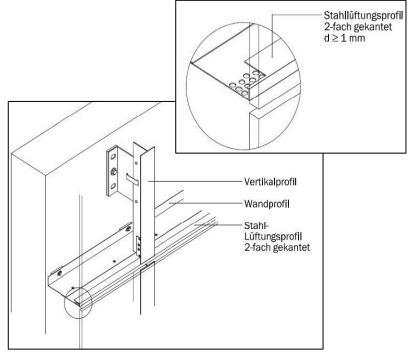
1.					
					BR
	BR, a	lternativ			BR, alternativ
					BR
	BR III				
	BR, a	lternativ			BR, alternativ

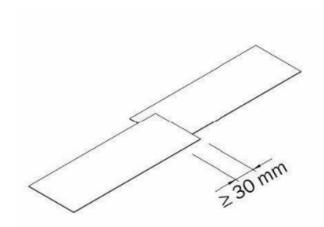

Brandsperren im Bereich der Geschossdecken



Brandsperren im Bereich von Fensterbank / -sturz

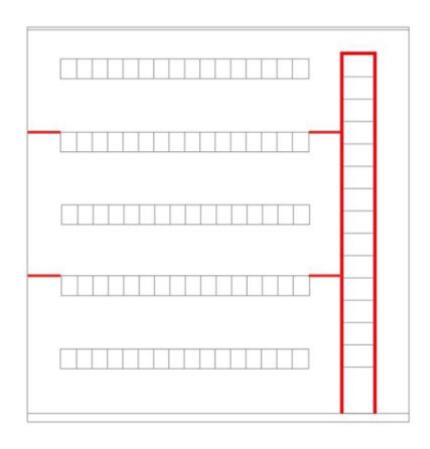

VERANKERUNGSABSTAND GLATTBLECH



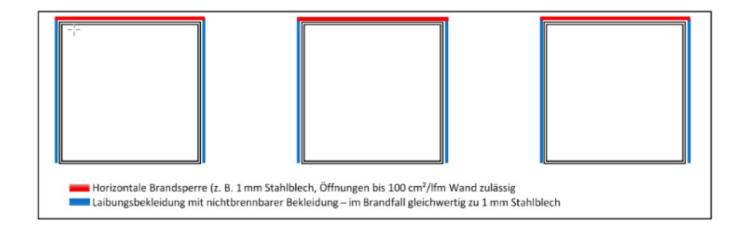




VERANKERUNGSABSTAND ZWEIFACH GEKANTET

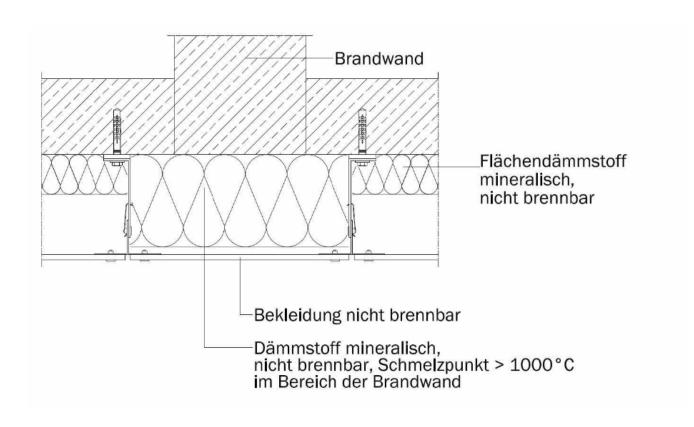


BEREICHE OHNE HORIZONTALE BRANDSPERRE



Fassadengestaltung

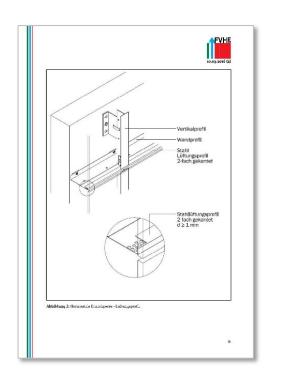
- Öffnungslose Außenwände
- abgeschlossene, geschossweise Hinterlüftung, z.B. bei durchgehenden bzw. geschossübergreifenden Fensterbändern

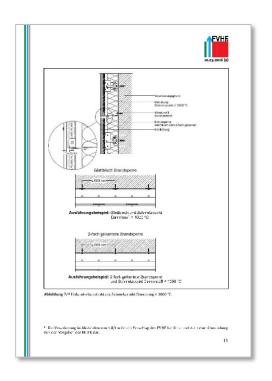

BEREICHE OHNE HORIZONTALE BRANDSPERRE

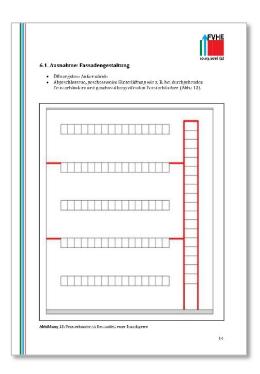
Baustoffe nichtbrennbar

- Bekleidungen, Unterkonstruktionen, Wärmedämmung und Halterungen (gilt nicht für Kleinteile ohne tragende Funktion, z.B.: Dämmstoffhalter, Dübelhülsen, thermische Trennungen)
- Zusätzlich: Verschließen des Hinterlüftungsraumes im Bereich der Laibung von Öffnungen - im Brandfall über 30 Minuten formstabil (z.B. durch Stahlblech mit einer Dicke $d \ge 1$ mm oder alternativ nachgewiesene Maßnahmen)

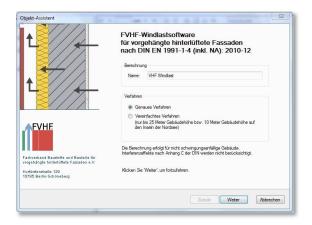
VERTIKALE BRANDSPERRE

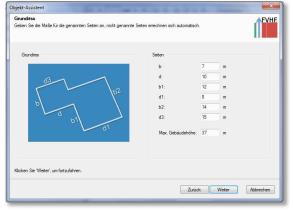


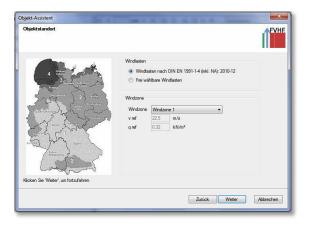

Text: MVV TB

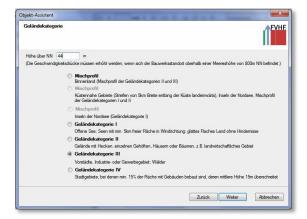

- Der Hinterlüftungsraum darf nicht über die Brandwand hinweggeführt werden
- Der Hinterlüftungsraum ist mindestens in Brandwanddicke mit einem im Brandfall formstabilen Dämmstoff mit einem Schmelzpunkt > 1000°C auszufüllen

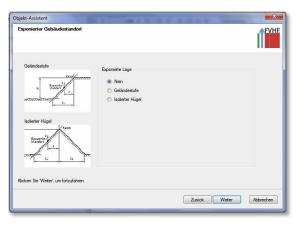
FVHF-LEITLINIE "VHF BRANDSCHUTZ"

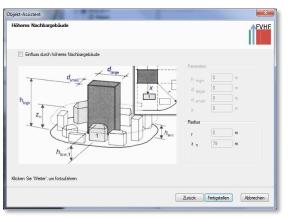


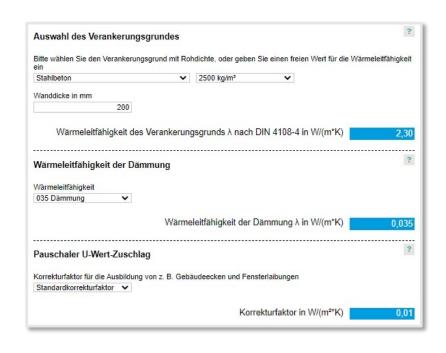


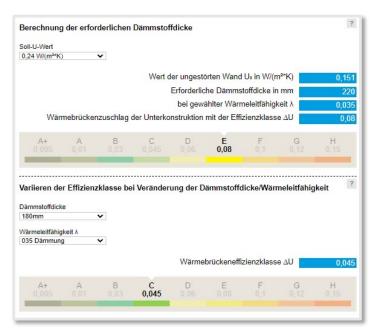

Quelle: www.fvhf.de/Fassade-bilder/docs/Prospekte/VHF_Brandschutz_160310.pdf




FVHF WINDLASTSOFTWARE







FVHF EFFIZIENZTOOL

Eingabe:

- Verankerungsgrund
- Wanddicke
- Wärmeleitfähigkeit der Dämmung
- Korrekturfaktor für z.B. Gebäudeecken / Fensterlaibungen

Ergebnis:

- Erforderliche Dämmstoffdicke
- Wärmebrückeneffizienzklasse
- Online-Tool auf www.fvhf.de

ZUSAMMENFASSUNG

- Sie kennen die wesentlichen Leitdetails einer VHF, um sie baukonstruktiv richtig zu planen
- Sie kennen die bauphysikalischen Vorteile, die eine VHF liefert
- Sie kennen die brandschutztechnischen Anforderungen an eine VHF
- Sie kennen die FVHF-Tools für die Planung einer VHF

Quelle: Deutscher Fassadenpreis für VHF 2020, nominiert, www.fvhf.de, Recyclinghaus Hannover, Arch.: Cityförster, Foto: Olaf Mahlstedt

www.fvhf.de

Das Bildungsportal für

Vorgehängte Hinterlüftete Fassaden